Pharmacogenetics of Drug Transport
(Part 5 in series)

Reginald F. Frye, Pharm.D., Ph.D.
Professor, Department of Pharmacotherapy and Translational Research, UF College of Pharmacy
frye@cop.ufl.edu
Disclosure

• I declare no conflicts of interest, real or apparent, and no financial interests in any company, product, or service mentioned in this program, including grants, employment, gifts, stock holdings, and honoraria.

The University of Florida College of Pharmacy is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing pharmacy education.
Outline

• Function and tissue distribution of drug transporters

• Genetic variation of drug transporters and its clinical significance
Transporters: ABC’s and SLC’s

• Transporters are classified by mechanism and genetic sequence
• Most drug transporters can be classified as a member of either the ABC or SLC Family
 – ATP-Binding Cassette Transporter Family
 – Solute Carrier Transporter Family
ATP-Binding Cassette Transporters

- Function to transport substances across biological membranes
 - Low MW compounds to polypeptides
- **ABC** transporters categorized into seven subfamilies based on phylogenetic analysis
 - ABCA to ABCG
 - 48 human ABC transporters
 - Common substrate characteristics between members of particular subfamilies
ATP-Binding Cassette Transporters

- Multidrug Resistance Protein
 - P-gp (MDR1 or **ABCB1**)
- Bile Salt Export Pump
 - BSEP (**ABCB11**)
- Multidrug Resistance-associated Proteins
 - MRP1 - MRP9 (**ABCC** subfamily)
- Breast Cancer Resistance Protein
 - BCRP (**ABCG2**
SoLute Carrier Transporters

- Most drug transporters belong to the SLC family
- ~350 transporters
- Do not contain ATP binding sites
- Transport diverse ionic and nonionic compounds – endogenous and xenobiotics

[Image from University of Florida]
SoLute Carrier Transporters

• Organic Anion Transporter Polypeptides
 – (OATPs)
• Organic Cation Transporters
 – (OCTs)
• Organic Anion Transporters
 – (OATs)
• Nucleoside Transporters
 – (CNTs, ENTs)
• And more...
Important role of drug transporters in ADME

- **Absorption** – Intestine
- **Distribution** – Brain, testis, fetus
- **Metabolism** – Liver
- **Elimination** – Biliary and renal
http://www.nature.com/nrd/journal/v9/n3/fig_tab/nrd3028_F1.html
Transporters and Pharmacokinetics

Intestinal transport

Giacomini Kathleen M, Sugiyama Yuichi. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11e
Transporters and Pharmacokinetics

Adapted from
Giacomini Kathleen M, Sugiyama Yuichi. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11e
Transporters and Pharmacokinetics

Hepatic transport

Giacomini Kathleen M, Sugiyama Yuichi. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11e
Genetic polymorphisms of drug transporters

- SCLO1B1 (OATP1B1)
- ABCG2 (BCRP)
- ABCB1 (MDR1, P-gp)
- SLC22A1 (OCT1)
OATP1B1

- SLC transporter, encoded by SLCO1B1 gene
- Expressed on the basolateral membrane of hepatocytes in human liver
- OATP1B1 mediates *uptake* of substrates from the blood into the liver
OATP1B1

Selected substrates

- Atorvastatin
- Enalapril
- Erythromycin
- Flavopiridol
- Lopinavir
- Maraviroc
- Methotrexate
- Nateglinide
- Pitavastatin
- Pravastatin
- Repaglinide
- Rosuvastatin
- Simvastatin

The c.521T>C variant, rs4149056, produces a p.V174A substitution and is contained within $SLCO1B1^*5$, $*15$, and $*17$ haplotypes.

Clinical Pharmacology & Therapeutics (2013); 94 1, 23–26. doi:10.1038/clpt.2013.12
CPIC Guideline: Assignment of likely SLC01B1 phenotype based on genotype

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype definition</th>
<th>Examples of diplotypes</th>
<th>Genotype at rs4149056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal function; homozygous wild type or normal (55–88% of patients)</td>
<td>An individual carrying two normal-function alleles</td>
<td>*1a/*1a, *1a/*1b, *1b/*1b</td>
<td>TT</td>
</tr>
<tr>
<td>Intermediate function; heterozygous (11–36% of patients)</td>
<td>An individual carrying one normal-function allele plus one decreased-function allele</td>
<td>*1a/*5, *1a/*15, *1a/*17, *1b/*5, *1b/*15, *1b/*17</td>
<td>TC</td>
</tr>
<tr>
<td>Low function; homozygous variant or mutant (0–6% of patients)</td>
<td>An individual carrying two decreased-function alleles</td>
<td>*5/*5, *5/*15, *5/*17, *15/*15, *15/*17, *17/*17</td>
<td>CC</td>
</tr>
</tbody>
</table>

Clinical Pharmacology & Therapeutics (2014); 96 4, 423–428.
SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid.

Pharmacogenetics and Genomics. 16(12):873-879.
DOI: 10.1097/01.fpc.0000230416.82349.90

Fig. 1b Mean+/-SEM plasma concentrations of simvastatin acid (b) after a single 40-mg oral dose of simvastatin in 31 healthy Caucasians in relation to the SLCO1B1 c.521T>C SNP. Open squares indicate individuals with the c.521TT genotype (n=16); solid squares indicate individuals with the c.521TC genotype (n=11); solid triangles indicate individuals with the c.521CC genotype (n=4).
Effects of the SLCO1B1 c.521T>C (*5) variant on (A) simvastatin acid plasma concentrations (40-mg SD) and (B) cumulative incidence of myopathy during treatment with 80 mg/day simvastatin.
Statin exposure (AUC) and the \textit{SLCO1B1} c.521CC (\text{*5}) Genotype
P-glycoprotein (P-gp)

- ABC transporter, encoded by $ABCB1$ gene
- The most well characterized drug transporter
- Originally discovered in MDR cancer cells
- Extensively expressed in the intestine, liver, kidney, blood brain barrier, blood-placenta barrier
- Over 100 polymorphisms with a MAF > 5%
- C3435T is the most commonly studied variant
P-gp substrates

Anticancer agents
- Actinomycin D
- Daunorubicin
- Docetaxel
- Doxorubicin
- Etoposide
- Imatinib
- Irinotecan
- Mitomycin C
- Mitoxantrone
- Paclitaxel
- Teniposide
- Topotecan
- Vincristine
- Vinblastine

Antimicrobial agents
- Doxycycline
- Erythromycin
- Itraconazole
- Ketoconazole
- Levofloxacin
- Rifampin
- Sparfloxacin
- Tetracycline

Antipsychotics
- Aripiprazole
- Olanzapine
- Paliperidone
- Risperidone

Anti-HIV agents
- Amprenavir
- Indinavir
- Neifinavir
- Ritonavir
- Saquinavir

Anticonvulsants
- Phenobarbital
- Phenytoin

Anti-emetics
- Domperidone
- Ondansetron

H2-antagonists
- Cimetidine
- Ranitidine

Immunosuppressants
- Cyclosporine
- Sirolimus
- Tacrolimus
- Valspodar

Neuroleptics
- Chlorpromazine
- Phenothiazine

Steroid hormones
- Aldosterone
- Cortisol
- Dexamethasone
- Methylprednisolone

Opioids
- Loperamide
- Morphine
- Pentazocine

Others
- Digoxin
- Ivermectin
- Terfenadine
- Vecuronium
Summary

• Drug transporters are important in ADME of substrate drugs.
• Genetic variation is one of the determinants of the expression and activity of drug transporters.
• PK and PD of substrate drugs can be affected by functional genetic polymorphisms, inhibitors, and inducers of drug transporters.
THE PHARMACIST’S ROLE IN CLINICAL PHARMACOGENETICS
Pharmacists and Clinical Pharmacogenomics

Personalized Medicine

Pharmacists are ideally positioned

- Experts in pharmacology, pharmacotherapy, and pharmacogenomics
- Traditional role in TDM/Individualized Drug Therapy
- Existing PK/TDM services can incorporate pharmacist-driven clinical pharmacogenomic testing.
Examples of Pharmacist-Led Pharmacogenomics Programs

- UF Personalized Medicine Program
- UI Health Warfarin Genetics Program
- St. Jude PG4KDS Program
Personalized Medicine

Clinical pharmacist’s role – multifaceted

• Choosing genotype platform/content
• Building clinical decision support
• Clinical interpretation of test results
• Facilitating communication among multi-disciplinary team members
• Providing education
 – Health care providers
 – Patients